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We present a model to forecast daly electricity demand in Spain. Instead of following the usual
practice of splitting the sample into homogeneous subsamples and building separate models, we
advocate the use of a single model for the whole sample. Thus the paper focuses on how to
achieve a single-equation model thal encompasses highly heterogencous data while remaining
stable for a quite long period of time. This case study may also be useful as an example of how
to proceed to model darly series of economic activity.

1. Imtroduction

Forecasting electricity demand in the short run is a very significant economic
problem, because electricity cannot be stored and producers have to anticipate
future demand in a very accurate way in order to meet it while avoiding
overproduction. In this paper we present a model to forecast daily electricity
demand in Spain; following Bunn and Farmer’s (1985) classification, it is an
off-line model, designed to improve the plan schedulling process from one day
to one week ahead. The model is also used in the study mode (Gross and
Galiana, 1987) to simulate the effect of different scenarios on the system.

Although the main purpose of the paper is to present a solution for a specific
forecasting problem, we think that it is not restricted to electricity demand
forecasting. The paper is an application of a general methodology to model
daily series of economic activity (Espasa 1993, Espasa and Cancelo 1995,
Espasa et al. 1996), and it may be useful for analysts working on related fields
of economic time series analysis. The contribution of the paper to the
literature of forecasting this kind of high-frequency economic data may be
summed up in two main points:
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research. Thanks are also due to two referees whose conments have led to significant
improvements over earlier versions. We acknowledge financial support from Spanish
DGICYT, projects PB93-0236 (both authors) and PB93-0653 (Cancelo).
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1) Forecasts are obtained from a single equation: contrary to the usual
practice, we consider a general dynamic model that captures the basic
underlying process of electricity demand into a single equation.

2) The way we deal with special days and weather variables generalizes
previous proposals: special days are modelled by a detailed intervention
analysis; the contribution of weather variables is taken into account by
piecewise linear approximations to nonlinear transfer functions, which are
allowed to vary according to the season, the day of the week, etc.

The paper is organized as follows: the main characteristics of electricity
demand in Spain are reviewed in Section 2. Section 3 shows a general
overview of the model. Section 4 centers on modelling special days. The effect
of weather variables is the subject of Section 5. The dynamic structure of the
disturbance and the validation analysis of the proposed model are discussed in
Section 6, and the main conclusions are summarized in Section 7.

2. General characteristics of the system configuration

Electricity distribution in the peninsular part of the Spanish territory
(excluding Canary and Balearic Islands and the african cities of Ceuta and
Melilla) is centralized at a state-owned utility. One of its tasks is to set the
production of the several producers, given their capacity and the expected
demand.

Peninsular Spain covers an area of almost half a million squared kilometers,
with more than 36 million inhabitants. Taken as a whole, the system is
winter-peaking: in 1988 maximum demand in winter was 1.15 times
maximum demand in summer. Cold days are more frequent than hot days:
we built 2 maximum temperature index for the whole territory by computing
a weighted average of the maximum temperature recorded in ten selected
observatories; in 1988 the index was below 20C (68F) in 150 days, and above
24C (75.2F) in 119 days.

The variable to model is the net demand for electricity, defined as total
production from all sources plus international interchanges balance less
intermediate autoconsumption and pumping consumption. It results from
aggregating very different regional systems; a spatially disaggregated analysis
would certainly improve the results shown in this paper, but regional data
were not available. The series shows a growing trend, related to economic
and socio-demographic factors, and several seasonal oscillations, among
which annual and weekly ones are the most remarkable. Special days
(holidays, vacation periods and any anomaly that alters normal daily activity)
and weather conditions also exert a major influence.

Figures 1 to 3 show some of these features. In Figure 1 the growing trend is
easy to see, as well as the annual seasonal. In Figure 2 several intra-annual
components may be observed: the weekly seasonal cycle; the extra
consumption due to temperature effects in winter (both extremes of the
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figure) and in summer (the relative maximum at mid-year); and the influence
of vacation periods (see for instance August). Figure 3 shows the distortion
induced by a special day (12 October), which breaks the usual pattern of
behavior within the week.
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Figure 1
Monthly Demand in 1983-1990
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Daily Demand in 1989



362 INVESTIGACIONES ECONOMICAS

MWh
400000

380000

T

360000 -

340000 [

320000

300000

280000 |-

9260000 SN NN W WS SO VRN S U EE S RSO { ST SR WS S S SO N Y Y N Y Y S

2 9 12 16 23
Days of the Month
Figure 3
Distortion caused by a holiday
(Monday, Oct. 2 to Sunday, Oct. 29, 1989)

3. Overview of the model

Observed demand (D,) may be expressed as the aggregation of the following
unobserved components:

InD, = SE, + SW, + CSD, + CWEA, + €,, . [1]

where /n(,) denotes natural logarithm, SE, a trend related to socioeconomic
factors, SW, a seasonal weekly component induced by the normal
workdays/weekends pattern, GSD, the contribution of special days that distort
the normal pattern, CWE4, the contribution of weather variables and ¢,
represents purely random transitory shocks not related to any of the previous
factors.

A base demand BD, can be defined from [1]:
InBD, = InD, — GSD, — CWEA, = SE + SW, + &, [2]

As short-term oscillations caused by special days and sudden changes of the
weather conditions have been eliminated, this new series displays a much
more regular evolution. It may be modelled by the following ARIMA model:

AA, InBD, =1, [3]
stationarity being achieved by applying the variance reduction criterion as
described in Espasa and Cancelo (1995) or Espasa et al. (1996) (7], denotes a

stationary disturbance that follows an ARMA process). From [2] and [3]:

AA,InD,= AA,CSD,+ AA, CWEA, + 1, [4]
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Without loss of generality we may assume that
CSD, = f, (L) SD,= X", f, .

CWEA, = f, (I’ WEA, = Zj=1f2j ) WEA, [5]

where SD, = (8D, , ... 8D, )" stands for a vector of dummy variables used to
model spemal days and 5 (L) for a vector of polynomials in the lag operator
L, in the spirit of Box and Tiao’s (1975) intervention analysis. In a similar
way, WEA, = (WEA,, ...WEA . ), refers to the set of weather variables and
f (D) represents a 'vector whose components are functions of L. No
restrictions are imposed either on the variables or on the filters, so [5] entails
no a priori simplification of the model. In particular, the orders of the
polynomials £ (L) and f,; (L) are free to adapt to the specific characteristics
of the variables they are related to.

The final model is obtained by combining [2], [4] and [5]:
AA D, = AA, f, (L) SD,+ AA, f,(L) WEA, + n,. [6]

This expression can be reformulated as a transfer function model on /D,
with non-stationary noise:

D, = f, (L) SD, + f, (L)) WEA, + 1, :
AA 6]
7

Leaving aside the contribution of special days and weather conditions, which
will be discussed separately in the next sections, its main characteristics are:

3.1. The logarithmic transgformation

The uvsual practice in short-term electricity forecasting is to work with non-
transformed data, although it is well known that ARIMA models for monthly
or quarterly economic series are usually based on logged data due to
heteroskedasticity. A similar result holds for daily data: to work with non-
transformed data may not induce serious distortions in a sample of three or
four months, but it is not a good choice when dealing with several years of
data at a time; Bogard et al. (1982) provide some valuable reflections on this
issue.

3.2. Trend and weekly seasonal modelling with difference operators

Economic conditions, electricity prices, population levels and the
determinants of the regular weekly pattern do not change on a day-to-day
basis, and they may be modelled implicitly by slowly evolving trend and
seasonal components. The difference filters proposed in [6]-[6'] provide the
minimum variance of the transformed series and they allow for a simple,
parsimonious way of explaining non-stationary characteristics of the variable.
Their usefulness in modelling daily or hourly energy series is well
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documented in the literature: see for instance Ernoult and Meslier (1982),
Goh et al. (1986), Pigott (1985) or Bogard et al. (1982). O’Connor and
Kapoor (1984) compare the performance of a purely stochastic ARIMA-type
model with a deterministic plus stochastic model, where sums of sinusoids at
the fundamental frequency and its harmonics are explicitly estimated. Not
surprisingly —from our point of view—, the latter shows a better fit to the
sample data, but the ARIMA model is better for forecasting; the authors
point out that this result seems to be the consequence of the superior
flexibility of the ARIMA specification to adapt to changes in the structure of
the data.

Specification, estimation and validation are based on data from 1983 to
1988; all results shown in this paper correspond to this sample. The final
specification has 126 parameters, which have been estimated from a sample
of 2174 observations; 87 parameters are for special days, 30 for weather
conditions and 9 for the random disturbance. Joint estimation was performed
with the SCA software (Scientific Computing Associates, 1986), which
provides maximum likelihood estimators based on the exact likelihood
function. Data for 1989 were used to test post-sample stability. Since then,
the model has been operated by the utility and used for real forecasting. The
parameters of the model are reestimated every six months; sample size is kept
constant, i.e,, each time a new semester of data is introduced the first six
months at the beginning of the sample are discarded.

4. Modelling special days
4.1. Outline of the procedure

The distortion on the demand caused by special days has been treated in
very different ways: compare for instance Hesterberg and Papalexopoulos
(1988), Ernoult and Mattatia (1984), and Bolzern and Fronza (1986). Our
procedure for estimating their influence is based on:

a) Some authors advocate to begin by erasing special days from the database
and modelling solely «normal» data; see for instance Pigott (1985). Quite the
reverse, we do not pursuit blind elimination of anomalies, but try to detect
stable patterns of the demand behavior in special days, so that feasible rules
to forecast the influence of similar events in the future might be found.

b) We analyze the characteristics of each type of special day by considering
the information about it contained in several years of data. We seek to
identify stable patterns of behavior that may lead to group homogeneous
special days, and to assign them the same effect on the demand, in order to
get more efficient estimators: this analysis allows to impose general
restrictions with respect to models that estimate one coefficient for each
anomaly. It was checked, by using likelihood ratio tests, that the restrictions
were not rejected by the data.
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Special days are classified into three groups: single bank holidays, vacation
periods (Easter, August and Christmas) and other anomalies (strikes, elections,
etc.). In this paper we make a brief review of the treatment of bank holidays,
as an illustration of the type of intervention analysis carried out in the
modelling process; a more detailed exposition of the influence of special days
in this series is available in Cancelo and Espasa (1991) or from the authors
upon request.

4.2. The influence of single Bank Holidays

The starting hypothesis is that the effect of a given bank holiday only
depends on the day of the week on which it falls. While the data seem to
support this assumption for most holidays, it was detected that imposing this
restriction entailed bad forecasts for very specific holidays, and we had to
distinguish general holidays from special holidays.

General holidays: Most Spanish holidays belong to this category, and a uniform
treatment suits them. Six dummy variables were used, one for each day of
week (no effects were detected for general holidays falling on Sundays); they
take values in the [0,1] interval according to the weight in total consumption
of the territory affected by the holiday. All variables are assigned a dynamic
filter in order to capture possible pre and post effects.

Special holidays: There are three single bank holidays —6 January, 1 May and 15
August— which do not fit into the general scheme and are modelled separately.
It was carefully checked that they needed special consideration; to base estimates
on a single observation is not a good practice as a general rule, but for special
holidays it seems worse to impose a common effect because they influence
electricity demand in a very different way. Even so, some restrictions, such as
some simmetry in the responses for holidays falling on Tuesdays and Thursdays,
were imposed in order to increase the efficiency of the estimators.

The final estimates are shown in Table 1. They reflect the change in the
logged demand caused by each holiday assuming that it has effects on the
whole territory; for regional and local holidays these coefficients should be
multiplied by the weight of the affected area on total consumption.

5. Modelling weather conditions: the influence of temperature

Given their expected influence on demand and the availability of data, the
following meteorological indicators were selected: maximum daily
temperature (which was preferred to average temperature as this was the
usual practice at the utlity), a temperature dispersion indicator (defined as
the difference between maximum and minimum temperature) and solar light
hours. Following the usual practice (see for instance Ernoult and Meslier
(1982) for France, Pigott (1985) for the UK, or Bolzern and Fronza (1986)
for Italy), all meteorological data used in the model are weighted averages of
ten selected observatories that cover the whole territory.
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Table 1
Estimated coefficients for holidays
Sunday ~Monday  Tuesday Wednesday Thursday Friday  Saturday
Sunday  -0303 (7.1
L2566 (45.8) -0409 (7.4)
2782 (33.9)  -025¢4 (3.2
Monday [2]( ) [2]( )
L1809 27.9) -0412 (6.4
L1017 (17.3) -2062 (44.4) -0333 (5.9
1003 (124) -2847 (32.6) -.0379 (3.5)
Tuesday L1142 (10.7) -3357 (37.5) -0539 (49)
[ [ [2
2604 (38.0) -0398 (5.8)
2782 (33.9) -0254 (3.9)
Wednesday 0538 (65) -3537 (37.5) -.0538 (6.5)
1548 (19.6) -0416 (5.2
9590 (57.0) -.1083 (21.6) -0255 (5.9
9847 (326) 1003 (12.4) - -
Thursday 3080 (38.3) -.1025 (12.8)
-1548 (19.6) -0416 (5.2)
2544 (35.9) -0839 (11.9)
. 9847 (32.6) -.1003 (12.4
Friday -.3080 (38.3) -.1025 (12.8
1548 (196) -0416 (5.2
0795 (189)
Saturday %
0693 (6.8)

Notes: [1] The figures refer to the estimated effect on the logged demand. In each cell
the first figure corresponds to a general holiday, the second to 6 January, the
third to 1 May and the fourth to 15 August; t-ratios in absolute value are shown
in parentheses. [2] No information in the sample 1983-1988 to estimate this
effect.

In this paper we focus on the relationship between the level indicator of
temperature and the demand for electricity, because it is by far the most
important for forecasting purposes.
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5.1. A priori information on the relationship

The main characteristics of the relationship between temperature and
electricity demand are:

a) The relation is highly nonlinear. There are two critical values of temperature,
T* < T™, that define a neutral zone in which temperature does not influence
demand. Below T* we enter into the cold zone, and above T in the hot zone.
The response function may be nonlinear in any of the cold and hot zones.

b) With daily data there is a dynamic response, as the demand for day ¢ will
be influenced by temperatures observed in ¢, ¢-1, ..., t-h. EPRI (1983) provides
arguments explaining this feature; see also Gross and Galiana (1987).

¢) There may exist a temperature value low (high) enough as to oblige every
heating (cooling) system to operate at full capacity; and additional decreases
(increases) of temperature will have no additional effects on demand.

d) The influence of a given temperature may be different according to the
time of the year: Bogard et al (1982) and Ernoult and Meslier (1982)
remark this point.

¢) The response of the demand to a given temperature may be different for

working and non-working days: see for instance Hesterberg and
Papalexopoulos (1988).

/) For a small period of time the stock of appliances may be assumed to be
constant, but when several years are considered this assumption may not be
valid: see Fischler and Nelson (1986) for a further discussion.

The two first characteristics are the most important for forecasting, and together
they define what we shall call from now on the basic effect of temperature; a
procedure to model this basic effect was presented in Cancelo and Espasa (1995).
The remainder are enlarged effects, and we shall refer to them as exhaustion
effect (characteristic c), time-of-the-year effect (d), type-of-day effect (¢) and stock-
of-appliances effect (f). Enlarged effects contribute to get a more reliable
approximation to the relation and more precise forecasts for specific dates.

5.2. A methodology for searching for specification

We propose the following sequential strategy:

Stage 1. To avoid the distortion caused by special days an ARIMA model
with intervention analysis is built:

= £ (L) L), 7
nD, = f* (L) SD, + > e,
SOl Ar @ (L)

and the logged demand corrected for special days is computed:
InDGSD, = InD,— f*, (L)'SD, . 8]
This will be the dependent variable in Stages 2 to 6.
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Stage 2. We begin with the basic effect, the most important and the most
difficult to model. The procedure described in Cancelo and Espasa (1995) was
used: in short, it consists of approximating a nonlinear dynamic relationship
by linear transfer functions defined on threshold variables, so that a piecewise
linear approximation results. A first estimation of the relationship is obtained:
n . : " : . 6(L)
— 0 ] () 0)
InDCSD: Ej=l B” (@) Cc”+ Ej=l B, (L) H” + An ol a, [9]

Cold threshold yariables take non-zero values only for temperatures below a
given knot J: C” = max (0,j —T,), T, being the maximum temperature of
day ¢. A similar definition applies to the hot thresholds H to) = max (0,7,—j).
Call expression [9] model A.

Model A was the final result of the application in Cancelo and Espasa
(1995). However, for the present problem of forecasting it is not a final
solution because it imposes a priori restrictions on all enlarged effects. In
the next stages we carry out a sequential procedure to test whether these
constraints are supported by the data, and extend the model if necessary.

Stage 3. Exhaustion effects are tested by considering several candidates for
exhaustion thresholds, estimating a different model for each candidate, choosing
the best one, and comparing it with model A by using likelihood ratio tests.
Both cold and hot zones are assigned exhaustion thresholds. Call this model B.

Stage 4. The year was split into four seasons which do not match the standard
division as the latter is not adequate for our purposes; Bogard et al. (1982) use
almost the same partition as ours, although they reached it by a purely
empirical analysis and we made extensive use of extrasample information
from meteorological experts. Afterwards, the corresponding temperature
variables were generated, a generalisation of model B that allowed for time-
of-the-year effects was specified and estimated, non-significant coefficients
were deleted, and likelihood ratio tests were used to determine which
between-seasons constraints could be imposed. Finally a model that includes
time-of-the-year effects, call it model C, was obtained.

Stage 5. The sample was divided into working and non-working days and
the same procedure as in Stage 4 was applied. The results of the whole
process point to a response function for the cold zone that varies according
to the type of day. This led to model D.

Stage 6. It was checked whether there exists an increase-of-the-stock-of-
appliances effect. We centered the study on the hot zone, as it was known
that sales of cooling systems in Spain experienced a boom during the second
half of the eighties. The data confirmed that there is a shift in the response
function for the hot zone, and model E includes it. We remark that with
aggregate data the only way to detect this type of effect is by looking for
shifts in the response function; Fischler and Nelson (1986) propose an
alternative procedure based on a saturation measure of the existing stock,
but their approach is not feasible in most aplications because no reliable
information on the saturation degree is usually available (EPRI, 1983).
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Table 2
Sequential procedure for approximating the relation between temperature and demand
MODEL A
Allows for: — non-linearity Imposes: — no exhaustion effects
— dynamics - no time-of-the-year effects

— no type-of-day effects
- no stock-of-appliances effect

\

TEST
Hjy: no exhaustion effects
Result: reject Hy

\J

MODEL B
Allows for: — non-linearity Imposes: — no time-of-the-year effects
~ dynamics — no type-of-day effects
— exhaustion effects - no stock-of-appliances effect
TEST

Hj: no time-of-the-year effects
Result: reject Hy

MODEL C
Allows for: — non-linearity Imposes: — no type-of-day effects
— dynamics — no stock-of-appliances effect
— exhaustion effects
— time-of-the-year effects
TEST

Hj: no type-of-day effects
Result: reject Hy for the cold zone, not reject for the hot zone

MODEL D
Allows for: — non-linearity Imposes: — no stock-of-appliances effect
— dynamics
— exhaustion effects
- time-of-the-year effects
- type-of-day-effects
TEST

Hj: no stock-of-appliances effects
Result: reject Hyfor the hot zone, not reject for the cold zone

\

MODEL E

Allows for: - non-linearity
— dynamics
~ exhaustion effects
— time-of-the-year effects
— type-of-day-effects
— stock-of-appliances effect
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Stage 7. Although all temperature effects already included in the model and
the parameters of the disturbance process are estimated in each stage, the
coefficients of special days remain fixed on the estimates of Stage 1. So the
procedure ends with a full efficient estimation of all the coefficients of the
final specification.

The whole procedure is summarized in Table 2. It may be argued that the
final specification depends on the way enlarged effects are ordered;
although we can not rule out this possibility, trying to consider all effects at
once is unfeasible and some type of sequental analysis has to be done. We
asked the experts of the utility to rank enlarged effects on a more-to-less-
important basis and used their ordering in the search; as a consequence the
procedure in Table 2 may be termed a simple-to-general specification
search guided by extrasample information.

5.3. Main results of the estimated relationship

Neutral zone is defined as the interval of temperatures between 20C (68F)
and 24C (75.2F). Below 20C we enter into the cold zone, its main results
being summarised in Table 3. Temperatures above 24C constitute the hot
zone, and their effect on demand is summarised in Table 4.

Table 3
Summary of the estimated coefficients for the cold zone
Season Non-linearity: Dynamics: Type-of-day effects:
knots at lags working non-working both
9C /48.2F 1 1.03 (3.1)
2 .57 (2.8)
3 57 (2.8)
11C 7 51.8F I -57 (2.6)
winter/spring 14C / 57.2F 1 .26 (3.3)
20C / 68F 0 .54(18.4) .62 (15.8)
1 21 (5.3) 27 (5.4)
2 23 (74) .30 (7.3)
3 13 (4.2) .00 (0.4
4 12 4.1) 15 (3.7)
5 09 (3.00 .12 (2.6)
6 - .08 (1.7)
7 - .08 (2.1)
summer/fall 20C / 68F 0 .32 (2.8)

Notes:

1. The coefficients are semielasticities expressed in %: a coefficient equal to 0.1 implies that for each
Celsius degree below the given knot the demand for electricity increases an additional 0.10%.

. Exhaustion effect at 9C / 48.2F.

. Type-of-day effect only detected for the threshold variable with knot at 20C / 68F.

. No stock-of-appliances effect detected.

No temperatures below 11C / 51.8F observed in spring.

. No temperatures bellow 14C / 57.2F observed in summer or fall.

. tratios in parenthesis.

N ook LN



MODELLING AND FORECASTING DAILY SERIES OF ELECTRICITY DEMAND 371

Table 4
Summary of the estimated coefficients for the hot zone

Season Non-linearity: Dynamics: Stock-of-appliance effects:
knots at lags 1983-1987 1988 onwards

0 A1 (2.9) 29 (8.5

Summer/Fall 24C / 75.2F 1 31 (8.4) 29 (3.5)

2 .07 (2.0) A5 (1.8)

Notes:

1. The coefficients are semielasticities expressed in %: a coeflcient equal to 0.1 implies that for each
Celsius degree above the given knot the demand for electricity increases an additional 0.10%.

. Exhaustion effect at 33C / 91.4F.

. No type-of-day effect detected.

. No temperatures above 33C / 91.4F observed in fall.

. Temperatures on the hot zone observed in spring do not affect demand. No temperatures
on the hot zone were observed in winter.

. tratios in parenthesis.

O 00 MO

[=2]

6. Stochastic properties of the disturbance term and model
evaluation

Simple and partial correlograms of the disturbance 1, in [6] suggest that it is
generated by the multplicative moving average process (1, 2) (7, 14) (357,
364, 728, 731, 735). The estimates of its parameters are shown in Table 5.
Although the annual part has not a straightforward interpretation, it has
been checked that it is not caused by outliers. Moreover, the coefficients are
such that if an annual AR (2) process with positive coefficients ~which has a
much more appealing interpretation— is used instead, the residual standard
deviation and correlograms would be almost the same, with no remarkable
changes on the forecasting performance of the model.

Table 5
Estimates of the parameters of the moving average process of the random disturbance
Parameter Estimate t-ratio
0, 21 9.6
6, 15 6.7
6, 83 37.6
6., .09 3.7
6557 -.06 2.6
0,5 —-.14 5.9
0, -.09 34
0,5 -.09 3.5
0,4 -.08 3.2

The final estimate of the residual standard deviation equals 0.0130: the
standard deviation of the one-period forecast error, given the true values of
the weather variables, is 1.30% times the point forecast. This was considered
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a pretty good performance by the experts of the utility given previous
forecasting experiences for this variable. The actual forecasting error is
higher because some values of meteorological variables are unknown and
must be replaced by forecasts. Weather forecasts are obtained from
meteorological experts and are neutral, in the sense that all competing
procedures use this type of meteorological forecasts.

To validate the model, the following analyses were carried out:

1) The usual misspecification tests for the residuals as a whole:
a) Zero-mean: the ¢-ratio to test this hypothesis equals 0.002.

b) Autocorrelation: Q)(7) = 11, Q(14) = 14.2, Q(30) = 42.3 and Q(365) = 406,
where Q(k) denotes the Box-Pierce-Ljung portmanteau statistic computed
from the first & autocorrelations.

¢) Skewness and kurtosis: the tests based on the asymptotic distributions of
the sample coefficients of skewness and kurtosis (Spanos 1986, p. 454) reject
the null hypotheses of a symmetric (f-ratio -3.7), mesokurtic (¢-ratio 13.3)
distribution. But if the fourteen residuals greater than 3¢, in absolute value are
deleted then the hypothesis of simmetry is no longer rejected (t-ratio -1.1) and
the ¢-ratio to test kurtosis falls to 2.7. These results indicate that although
normality does not hold the true underlying distribution is not far from it.

2) The residuals were split by days of the week, months of the year and
years, in order to analyze separately each group. Splitting by two of these
factors at a time was not advisable because too few observations resulted.

a) Zero-mean: in all cases except one (residuals of July, ¢-ratio 2.8) the
null hypothesis of a non-significant mean is not rejected.

b) Homoskedasticity: Table 6 shows the standard deviation for all
groups, and at a first sight it looks like the residuals are not homoskedastic:
if they are classified according to the day of the week, volatility is higher
around weekends; if they are grouped by the month of the year, December,
April and August are the most difficult months to forecast, while November
and October are the easiest; and the variance is not the same by years,
although no regular pattern of change is detected. To confirm formally
what the sample figures seemed to indicate we computed a test on the
equality of several variances (Mood et al. 1974, pp. 439-440), and the null
was rejected for all criteria of classification; the statistic takes the value 15.0
(asymptotically distributed as a chi-square with 6 degrees of freedom under
the null) if the sample is split by days of the week, 52.8 (chi-square with 11)
by months and 54.8 (chi-square with 5) by years.

This seems to be a serious shortcoming; but we think that the interesting
result is not that residual standard deviation still varies, but that its variation
is much smaller than the variation in the original data. Table 6 also shows
the standard deviations computed from the stationary transformation (A A7 ln)
of the original series for all the groups; a quick comparison provides strong
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evidence that the model wass successful in explaining most of the original
heteroskedasticity.

Table 6
Standard deviations for different subsamples:
differenced series and residuals of the model

Day-of-the-week Months-of-the-year Years
days A A7 inD, residual month A A7 inD, residual year A A7 [nD, residual

Sun.  .0421 .0140  Jan. 1065 0130 1983  .0788 .0152
Mon. .0689 .0134 Feb. 0250  .0125 1984  .0802 .0130
Tues. .0776 0120 Mar. 0666  .0136 1985  .0729 .0139
Wed. 0914 .0120 Apr. .0974 0142 1986  .0680 .0104

Thurs. .0982 0124  May 0912 0131 1987  .0757 .0129
Fri. 0777 .0140  June .0719  .0129 1988  .0826 .0122
Sat. .0672 0130  July .0431 ~.0119 TOTAL .0765 .0130

TOTAL .0765 0130  Aug. 0641  .0138

Sept. .0309  .0127
Oct. .0769  .0108
Nov. .0756  .0098
Dec. 1092 .0160
TOTAL  .0765  .0130

Taken as a whole, the results of the analysis of validation indicate that the
model provides unbiased forecasts for every moment of time and that it is
not possible to improve it by considering linear functions of the available
set of information. This is the major achievement of our work and the
reason that explains why the model has beaten alternative forecasting
procedures for this series. However, they also show that our results may be
improved by taking into account non-normality and heteroskedastlmty the
forecasting performance of the resulting model would remain almost
unchanged but it would be possible to adapt the confidence intervals to get
a more accurate measure of the uncertainty related to each forecast.

In any case, one would expect to face serious problems of non-linearity before
beginning to work with the data, up to the point that a linear model as ours
should be a very bad approximation to the underlying generating process.
Quite on the contrary, the analysis of the residuals seems to indicate that our
model is a not so bad approximation; further research on the subject should
provide a measure of how far the linear approximation of this paper is from
the «best» nonlinear model.

7. Conclusions

We think that the methodology proposed in this paper improves
significantly the usual approach for modelling this kind of series. Its main
characteristics are:
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1) A satisfactory single equation model is achieved:

The usual procedure consists of splitting the sample into homogeneous
subsamples and building separate models for each one of them. In our
approach all observations are integrated in the same model, which has the
following advantages:

a) To simplify the management of the database and the forecasting
procedure, an essential requirement for the model to be useful.

b) To analyze the behavior of the demand in the transitions from one type of
day to ancther, from one season to another, etc., avoiding the bad
performances that separate models show in transitions.

¢) The aggregation of different special days into a smaller number of groups
leads to more efficient estimators, and to a better forecast of the effect of an
anomaly that happens for the first time.

2) The parsimonious way of obtaining: adaptative trend and seasonal, and
stable effects for special days and weather variables.

Most models are specified in such a way that they are not flexible enough to
capture the effect of changing conditions on the basic load or on the weekly
seasonal: see for instance the univariate forecasting models in Engle et al.
(1992). This is the main argument in the literature for considering a short
sample: the less flexible the model is, the shorter the sample must be to avoid
contaminating the estimates with old data.

We think that the procedure presented in this paper allows to extract all the
advantages related to a large sample (greater efficiency) without its drawbacks
(using information no longer relevant): estimated effects of special days and
weather variables measure relative changes with respect to the present level
of the series, and they are expected to remain more stable in the medium
term than estimates of absolute changes; and the trend and seasonal
components are modelled in such a way that they adapt quickly to the most
recent information.
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Resumen

En este trabajo se presenta un modelo para predecir el consumo diario de energia
eléctrica en Espafia. No se sigue la practica habitual de dividir la muestra en
submuestras homogéneas y construir modelos especificos para cada una de ellas, sino
que se propone un modelo tinico para toda la muestra. Asi pues, el trabajo se centra
en cémo obtener un modelo uniecuacional aplicable a datos muy heterogéneos que
se mantenga estable durante un periodo de tiempo relativamente largo. Esta
aplicacién también es de interés como ejemplo de una metodologia general para la
modelizacién de series diarias de actividad econémica.
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